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Abstract: To understand Gauss’s theory about the non-Euclidean geometry we have to 

reestablish some definitions of the coordinate system, and introduce the so-called 

Gaussian coordinates. We show here that the two points distance as a postulate can 

establish a metric geometry. If we can show the validity of this postulate on any surface 

than it has his geometry, and not necessarily Euclidean. Gauss showed in The 

Theorema Egregium that a surface might have such attributes. The different geometries 

of the regular surfaces written here are Euclidean, spherical, and hyperbolic. This 

theorem presented in 1827. 

(Based on the lectures of K. Lanczos: Department of Physical Sciences and Applied 

Mathematics, North Carolina State University, Raleigh, 1968.) 

The importance of this lecture is to make clear and understandable how and why the 

physicians use non-Euclidean geometry. 

 

 

I. ANTECEDENTS 

1. A postulate of the coordinate system establish the metric geometry 

The Cartesian coordinate system applicable for the full Euclidean geometry and 

every point is metric: the distance between any two points determined by the 

algebraic way. In other words, the Cartesian coordinate system and all of its 

correct conversion are metric spaces and exist such a portion, which is fully met 

with the Euclidean geometry [3]. Gauss showed that the full geometry could be 

constructed by only one postulate. 
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The distance between any two points AB  is:    
2 22

2 1 2 1s x x y y    . 

Gauss showed that the Euclidean geometry can be deduced from this postulate.  

 

We study here only the structure and validity of the coordinate system based on 

this postulate. 

Axes: Straight lines, which intersect each other at the origin and perpendicular 

pairwise. Such a line, for example, the number line with the ordered set of the 

real numbers. Two perpendicular axes form a plane, which the privileged point is 

the origin O, then we call them respectively, x-axis or abscissa and y-axis or 

ordinate. 

 

Coordinates: Distances measured from the axes, in geometric terms a 

perpendicular projection of the point P to the axes. The distance is the length of 

this section. 

The point now a pair: ( , ) '' '; ' ''P x y x PP OP y PP OP     

The relationship between the pair and the point is mutual: we can define x and y 

from the point P, or vice-versa get the P point from x and y. 

Consequences: 

1. We may replace all geometric constructions with algebraic operations. 

2. We may replace any algebraic operation for an (x,y) to geometric construction. 

 

Angle: Gives the direction of the straight line, that goes through O and P points, 

and we usually measure it from the x-axis. Geometrically the inclination of two 

lines lays both on origin, i.e. the angle between them. Algebraically the ratio of 

the P coordinates: 
y y

tg arctg
x x

     also called tangent, whereas POP' is a 

right triangle (the angle at the origin). 

 

Straight-line: We can get the straight-line equation if we use 
y
tg m

x
   for a 

point P lay on a line: y mx , which means that any solutions of this equation –  

the (x,y) pairs - are on the line. If the line does not cross the origin then the 

equation altered to: 0y mx y  , where 0y  the cross point with the y-axis, or 

algebraically the equation’s solution for x=0.  

We show here that the algebraic expression 0Ax By C    - a linear equation 

with two unknown quantities - all possible solution’s lay on a straight line and 

also describe all its points. 

The 0y mx y   straight-line lays on two points: 0(0, )y  and 0( ,0)x  which intersects 

the axes. So from the two equations 0

0

y
m tg

x
  and 0

0

0

y
y x y

x
  , by making 
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common denominator 0 0 0

0

y x y x
y

x


  and reduce to zero, we get: 

0 0 0 0 0y x x y x y   . Now let us use this notions: 
0 0 0 0; ;A y B x C x y     (see the 

meaning of the negative value on the figure: if 
0 0y  , then 

0 0x   and vice versa). 

Thus, we showed that the 0Ax By C    expression is the coordinate-geometry 

form of the straight line. Any points on the line are solutions of the equation and 

only those. 

 

Circle: The definition of the circle immediately gives its equation: a geometric 

location of all points, which lay in the same distance from a common point. So, 

using the distance postulate:    
2 22

0 0r x x y y    , where r the radius and 
0 0( , )x y  

is the origin. 

 

Arc: A piece of the circle line. The angle of the full circle is 2π, and the 

circumference of a circle is 2rπ, then proportionally the AB  arc has an angle AB  

and so 
AB

r
  , and its length AB r . 

 

Now we have shown that the basic elements of the Euclidean geometry fully 

revealed in a Cartesian coordinate system. 

 

Infinitesimal distance: for the sake of generalization of the space concept, we 

satisfy to study the immediate surrounding of a point, so we interpret the distance 

between ( , )x y  and ( , )x x y y   where the   can be any small size, i.e. 

infinitesimal. Then using our only postulate, the distance: 2 2 2ds dx dy  , because 

x dx x dx    and y dy y dy   . 

The derivate of the function ( )y f x  is: '( ) '( )
dy

f x dy f x dx
dx

     then 

2 2 2' ( )dy f x dx  and from these 2 2 2 2' ( )ds dx f x dx  . We have the distance by 

integration between the two points: 21 ' ( )

B

A

s f x dx   if s minimal. Leaving the 

details of the reduction – requires variation computing - we arrive at the line 

equation: 0Ax By C   , which means, the smallest distance between two points 

is a straight line segment. This refers to our geometric attitude. So we proved that 

the postulate valid in the infinitesimal environment also. 

 

The intersection of two lines: Very interesting task to find the intersection of 

two lines. 

Let us have these two lines:  

1 1 1 1: 0e a x b y c    and 2 2 2 2: 0e a x b y c   .  
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The P interception point is the common solution of the two equations, the (x,y) 

value that satisfies both equations. Leaving the reduction out we get: 

1 2 2 1

1 2 2 1

b c b c
x
a b a b





 and 2 1 1 2

1 2 2 1

a c a c
y
a b a b





.  

Consequently, the two lines always intersect each other if the determinant non-

zero: 1 1

2 2

0
a b

a b
 . If it where rather zero: 

1 2 2 1 0a b a b  , then 1 1

2 2

a b

a b
 , which means 

the tangents are equal because 1
1

2

a
m

a
  and 1

2

2

b
m

b
 . Thus the two lines are parallel 

i.e. no common points. 

2. Curve line coordinates 

We arrived at beautiful results, then we continue with our imaginations, and we 

assume that the lines replaced by arbitrary curves like this: x = f (t) and y = g (t), 

where f (t) and g (t) is continuous function of variable t, and ought to be 

differentiable for infinitesimal use. 

There have been examined already many curves geometrically – usually, each is 

special case - but we would like to arrive at a general solution by algebraic way. 

It is possible, as we did not attach any more condition, only the continuity and 

differentiability. Then in this way, we can determine the ‘direction’ of a curve 

and introduce the concept of ‘curvature’. 

The direction of a curve at any point is the gradient of the tangent line: 
2 2 2 0ds dx dy    drawn to that point. The direction changed from point to point: 

this is what we call: curvature. Now, draw a circle through three points of the 

curve – the best fitting circle – then the distance from its origin will be 

proportional to the curvature at that point. If we determine these origins for all 

points we get another curve with ordinates: ( )t  , ( )t  . This we call evolute 

of the original curve. 

3. Gaussian coordinates 

As we have seen the geometric problems translated to algebraic ones by using, 

either orthogonal ( , )x y  or polar ( , )r   coordinates. Than their conversion: 

cos ; sinx r y r    [3]. We also have seen the coordinate-lines dividing a plane 

into small quadrants.  

Let’s consider these generally, according to Gauss, and introduce the following 

general relations: ( , ) ; ( , )x x u v y y u v   which again have to be continuous and 

differentiable in the studying environment, and have also a non-zero determinant: 

0

x x

u v

y y

u v

 

 

 

 

 . Note that this not met at r=0, in the origin’s environment. 
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The so introduced (u,v) pairs uniquely define the points of a surface. These 

referred to as Gaussian coordinates. The coordinate-lines drew according to (u,v) 

also divides the plane into small quadrants.  

 

Now we have to show that the postulate also valid with the Gauss-coordinates. 

According to the determinant above: 
x x

dx du dv
u v

 

 
  ; 

y y
dy du dv

u v

 

 
   and by 

this the distance i.e. the postulate is 
2 22 2

2 2 2 2 2 2
y y y yx x x x

ds dx dy du dv dudv
u u v v u v u v

      

       

           
           
              

         

 

In the case of polar coordinates, the expression with the necessary reductions is: 
2 2 2 2ds dr r d  . Now the arc, which is the shortest way between any two points 

A,B gives:    cos sin 0a r b r c    . Therefore, this is the postulate! 

 

Now we proved that in both, the Cartesian and the Gaussian coordinates - 

straight line, curve line or orthogonal and non-orthogonal – the distance postulate 

valid and describes the full geometry.  

Now we may expand the here discussed two-dimensional space to any space if 

the postulate remains unchangeably valid in the resulting space. We call these 

spaces metric-space according to our modern conceptions, regardless of the 

number of dimensions. 

 

In many cases, we will be satisfied if the conditions apply only in the immediate 

surroundings of a point in a space. Conversely, if any points in a space have such 

an environment by which a coordinate system interpreted, then the space is a 

Euclidean topological space. 

4. Gauss’s non-Euclidean idea 

Gauss came to an interesting result when he had to perform measurements in a 

hilly area. Provided two sets of curves intersecting each other mutually, like the 

coordinate-lines. These are the already known (u,v) pairs. Now, if we place them 

into a three-dimensional orthogonal coordinate system then it is expressed this 

way ( , ) ; ( , ); ( , )x x u v y y u v z z u v   , and the arc: 2 2 2 2ds dx dy dz   . 

Express the former with the latter: 
x x

dx du dv
u v

 

 
  ; 

y y
dy du dv

u v

 

 
  ; 

z z
dz du dv

u v

 

 
    

and replace to the arc expression, then we get 2 2 22ds Edu Fdudv Gdv   , where  
2 2 2

x y z
E

u u u

  

  

     
       
     

;  



The Gauss’s Theorema Egregium or how come Gauss beside Bólyai and Lobachewski. 

---------------------------------------------------------------------------------------------------------- 

------------------------------------------------------------------------------------------------------------------------------ 
Peter G. Gyarmati 6 20022. 01. 01 

x x y y z z
F

u v u v u v

     

     
   ;  

2 2 2
x y z

G
v v v

  

  

     
       
     

. 

 

We come to an interesting result: the distance on the surface and in the space 

may have the same. Rather these points are on a curve on the surface and on a 

straight-line segment in the space. However, it can be true infinitesimally, as the 

two points are arbitrarily close to each other. This 2ds  is a limit and a common 

value in the space and on the surface. We got a different geometry, the internal 

geometry of the surface, where these shortest lines are straight. Moreover, it shall 

remain valid as long as we stay on the surface.  

Therefore, Gauss showed that the internal geometry of a curve surface is 

uncontradictory and does not have to be the subject of the Euclidean postulates. 

If this surface is an ellipsoid, for example, then easy to understand that a triangle 

will incongruent for the move, either the sides or the angles will change. The 

consequences are that the space changes from point to point. 

II. THE THEOREM EGREGIUM 

1. The curvature 

In 1827, Gauss published the Disquisitiones generales circa superficies of the 

curves, - General studies of the Curved Surfaces [4] - and inside with a theorem 

that he signed as remarkable: Theorem Egregium. 

 

 

 

 

 

 

 

 

 

 

 

This writing defined the curvature as follows:  

Let given a surface, and construct the gradient of the tangent plane for a point P. 

Now we use a plane along the gradient, which will cut a plane-curve from the 

surface. If we move around this plane along the gradient as an axis, than in each 

step the cut of the plane-curve will be different. We get dissimilar radiuses and 

curvatures. However, each curvature will have a maximum then a minimum 

value, in the extreme positions of the rotating plane: radius 1 2R and R .  Let’s call 
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the reciprocals as curvatures and the extremes as main curvatures: 
1

1

1
k

R
  and 

2

2

1
k

R
 . Of course, this may not be an internal property of the surface, since the 

gradient is outside from the surface. Therefore, the curvature is available only 

from a space that contains the surface. 

Consider the product of the two main curvature
1 2

1 2

1
k k k

R R
  .  

Gauss came to the surprising conclusion, - which is not deducted here – that the 

value of k can get from (E), (F), and (G). 

Then, this is notwithstanding an internal property of the surface, regardless of 

whether we defined externally. The value of k independent from the (u,v) 

coordinates since we constructed it with clear geometry. So k, the curvature is 

invariant in any Gaussian coordinate-system! 

2. The property of k 

Now examine the different values of k. 

In general cases, the value of k constantly changes according to the surface, but 

let's examine the special cases:  

- If k=zero, then the surface is a plane, become Euclidean;  

- If k=constant, then the surface is even and so the forms on it may freely move 

without changes.  

The constant value either positive or negative:  

- If the radiuses are on the same side – positive k - of the tangent - than the 

surface convex; 

- If they are on different side, – negative k - then the surface saddle-shaped ie. in 

all directions move away from point P.  

As we already mentioned, we are talking about, "even" surface, i.e. the curvature 

constant. We also did the necessary calculations. Then let us, have a unit size 

curvature, and then we come to the following terms. If 

k = 1, then the geometry spherical: 2 2 2 2sinds du dv u   

k = 0, then the geometry Euclidean: 2 2 2 2ds du dv u   

k =-1, then the geometry hyperbolic: 2 2 2 2ds du dv sh u   

 

 

 

 

 

 

 

 

  
 

Different k values 
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Notice the simple differences between each distance and yet they open a quite 

different world. The Euclidean Geometry has the multiplier factor: 2u , the 

Spherical Geometry has the: 2sin u , and the Hyperbolic Geometry has the: 2sh u .  

 

This is the beauty of mathematics. 

3. Other results 

Gauss in this presentation came to the definition of the non-Euclidean 

geometries, having evidence about their existence and uncontradictory.  

Gauss’s investigations covered this field are little known, but we know his other 

result which leads to the sum of the angles in a triangle. This definition uses the 

calculation of the area of a triangle, which is a relationship between the area and 

the curvature. He came to the following: kd         , where the d is an 

infinitesimal surface-unit and the integration gives the area of the entire triangle. 

From the expression using the three constant k values we get these: 

k=1          

k=0        

k=-1           

This means that the area of a triangle is proportional to the sum of its internal 

angles. So this emerges that in spherical case >180°, while in the hyperbolic 

case, <180°, and we get back the Euclidean case if =180°. 

 

A further result is that this area calculation can be applied also in general case - 

in an infinitesimal sense - even when the k changes point by point. 

III. CONCLUSION 

Gauss's work is not the composition of the non-Euclidean geometry; however, 

these results undoubtedly deserve the remarkable or prominent theory name. 

Consequently, Gauss’s name suitable beside the names of Bólyai and 

Lobachevski.  

In addition, the consequences of this theorem led us to Riemann Geometry. 

For the physicians means that if any physical space or motion describable with 

Gaussian coordinates may calculate according to non-Euclidean geometry and 

vice-versa. 

This has special significance for me because I am not a fan of scientific racing or 

star making. I rather much believe in the more effective work, make it by one or 

plenty, anyone. This statement is extremely important these days when science 

has also promoted collaboration. Please remember to all participants and not let 

just the leaders win the glory and have the recognition.  
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I know it's not easy, though only this is worthy. 
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